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Abstract: The use of generalized correlation analysis (Noda, I. Appl. Spectrosc. 1993, 47, 1329-1336)
for processing two-dimensional arrays of NMR data is described. This analysis produces complex two-
dimensional spectra whose cross-peak intensities are related to correlations in the responses of pairs of
signals to systematically incremented perturbations. The technique extends and generalizes the applicability
of two-dimensional NMR by allowing model-independent analysis of nonperiodic signals as well as model-
dependent analysis of such signals. When applied to diffusion-ordered NMR data, the processing scheme
produces two-dimensional output spectra having two frequency axes. Relative diffusion coefficients are
encoded in the signs and intensities of the cross-peaks. Key properties of the resulting spectra are model-
independent, so the approach provides an alternative to traditional DOSY processing and offers advantages
for data sets that do not provide pure exponential or Gaussian response curves. When data do conform
well to a known response function, the technique provides a method for extracting descriptors in a two-
dimensional plot having one axis corresponding to the descriptor and the other axis corresponding to the
usual chemical shift scale. Finally, the technique may be used to identify differences in the response functions
of closely related samples, generating a one-dimensional spectrum with signals at frequencies whose
response functions differ between two samples.

Introduction

Nearly all implementations of two-dimensional NMR spec-
troscopy correlate nuclear resonance frequencies in two different
experimental time domains using a standard protocol consisting
of a preparation period, an evolution period, a mixing period,
and a detection period.1,2 Data are converted from the time
domain to the frequency domain by using two-dimensional
Fourier transformation or a similar technique. In general, the
correlations among frequencies present during the evolution and
detection periods are established by a coherence transfer process
that occurs during the mixing period. The correlations are
encoded as different modulation frequencies for signals in the
two time domains. In recent years, two-dimensional NMR
spectroscopy has been extended to include correlations that are
not encoded as frequency modulations.3 Based on the work of
Johnson, mapping diffusion coefficients along a second axis
has become especially widespread. In these experiments,
correlations are encoded in the decay constants describing
different signals during the evolution period. Signals having
closely similar decay constants are correlated in the sense that
they are likely to originate from the same molecule. Spectra in
which one axis corresponds to nuclear resonance frequencies

and the other corresponds to diffusion coefficients are referred
to as DOSY (Diffusion Ordered SpectroscopY) spectra.

Procedures for creating two-dimensional spectra in which the
correlations arise from processes other than coherence transfer
or in which the correlations are not encoded as modulation
frequencies are well established in the field of optical spectros-
copy.4,5 These procedures were developed because the standard
two-dimensional spectroscopy protocol used for NMR is difficult
to apply in optical spectroscopy. One difficulty is that excited-
state lifetimes in IR, Raman, and UV spectroscopies are too
short to allow easy applications of multiple pulse sequences
for manipulation of coherences. Femtosecond laser pulses6-8

have been used recently to circumvent this limitation.
To achieve a more general approach to 2D spectroscopy, a

conceptual departure from the conventional 2D NMR approach
was proposed. It was noted that most elements of the radio
frequency pulse sequences used in 2D NMR can be regarded
as systematically varied perturbations to the spin systems, while
the final pulse and the acquisition period serve to probe the
response of the system to the perturbation. The method for
generating 2D correlation spectra without requiring coherence
transfer follows from the observation that the perturbation does
not necessarily need to be produced by the same type of process
used to probe the response. So long as the response of the system
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to the perturbation occurs on a time scale that can be probed
spectroscopically, it is possible to generate correlation spectra
based on the response curves at various frequencies. For
example, the first two-dimensional IR spectra were generated
by using a periodic mechanical deformation of a polymer film
monitored by IR spectroscopy.9

The key to establishing the correlations is to define a
computational process whereby pairs of response curves can
be compared. A particularly useful and general process for
correlating response curves is to compute the overlap integral
of the complex Fourier transforms of response curve pairs. The
real and imaginary parts of these integrals provide specific
information on the relative behavior of the response curves.
Some aspects of this information are independent of the
functional form of the response curves. Arranging these pairwise
Fourier-space overlap integral values in a two-dimensional
matrix creates the two-dimensional correlation spectrum. This
approach is known as generalized correlation analysis.5 In
applying generalized correlation analysis, it is not necessary to
obtain the response curve pairs from within a single data set.
Sources of data can include response curves from different
samples probed by the same technique, from models for
predicted responses, or even from unrelated spectroscopic
techniques.

Even though the development of generalized correlation
spectroscopy was initially motivated by 2D NMR spectroscopy,
it has evolved into a somewhat different but similarly powerful
spectroscopic tool.10 Interestingly, however, the generalized
correlation scheme has rarely been applied to the analysis of
NMR data. Nonetheless, there are many applications of NMR
spectroscopy for which it is valuable to establish correlations
between the behavior of signals at different frequencies, in
different samples, using other spectroscopic probes, or among
samples and models. The purpose of this report is to enumerate
and demonstrate a few applications of generalized correlation
analysis to NMR data to show the potential utility of this
technique. Benefits of using generalized correlation analysis for
NMR data include the following: (1) It is possible to calculate
and interpret correlations among NMR response functions at
different frequencies without reference to a model and without
knowing the mathematical form of the response functions. (2)
It is possible to compare the experimental spectral response to
a model response if the response function is known or
postulated. (3) It is possible to identify differences in the
responses of closely related samples.

Model-free data analysis with generalized correlation methods
is illustrated by presenting a new processing strategy for DOSY
data. The resulting spectrum has two frequency axes, and
information on the relative diffusion coefficients is contained
in the intensities and signs of the cross-peaks. No curve fitting
is used to generate the spectrum. Generalized correlation analysis
makes no assumptions about the form of the data whereas
conventional curve fitting methods require that the response
curves are well-described by exponential decay functions. For
many data sets this approach circumvents difficulties that occur
during the use of existing strategies for processing DOSY data.11

The ability of generalized correlation to compare model and
experimental response curves is illustrated by using the same
diffusion data and a model data set to produce a traditional
DOSY spectrum having chemical shift along one axis and
diffusion coefficient along the other axis. The ability to evaluate
differences in the behavior of complicated samples is illustrated
by presenting a new processing strategy for identifying those
signals in a mixture whose response curves are changed by
addition of another component. The output of this approach is
a one-dimensional spectrum containing signals at those chemical
shifts whose response curves are altered by addition of a new
component.

Methods for Generalized Correlation Spectroscopy

Generalized correlation spectroscopy is thoroughly described in the
literature.5 The present description is limited to those aspects and
modifications pertinent to analysis of NMR data. The core operation
in generalized correlation analysis is to compare two response curves,
y(ωm,p) and y(ωn,p), whereωm and ωn refer to specific frequencies,
andp corresponds to the independent variable describing the progress
of the response curve. In the formal treatment of generalized correlation
analysis these curves are adjusted by subtraction of a reference function.
In the NMR applications described in this report this operation is not
performed, though there may be situations for which it is necessary.
The Fourier transforms of these curves are calculated by using the
following expressions:

where the asterisk represents the complex conjugate,q is the variable
conjugate top with respect to Fourier transformation, and the symbols
R and I denote the real and imaginary parts of the Fourier transforms,
respectively.

The value of the complex generalized correlation matrixS at
coordinates (ωm,ωn) is given by

where

Here,Φ is the real part of the matrix andΨ is the imaginary part. The
real part is symmetric about the diagonal, while the imaginary part is
antisymmetric. Thus, the generalized correlation matrix is Hermitian.
The real and imaginary parts are also called thesynchronousand
asynchronousspectra, respectively. This nomenclature traces back to
time series analysis which provided the foundation for generalized
correlation analysis. Extension of these expressions to discretely
sampled data is straightforward.12,13

Data analyzed by generalized two-dimensional correlation is often
from a single set of measurements. It is also possible to calculate a
generalized correlation matrix in which response curvesy(ωm,p) and
y(ωn,p) come from different data sets. There are no restrictions on the
nature or origins of the data sets, so NMR data may even be correlated
with data from another spectroscopic technique. The process of(9) Noda, I.Bull. Am. Phys. Soc.1986, 31, 520.

(10) Ozaki, Y.; Noda, I., Eds.Two-Dimensional Correlation Spectroscopy;
American Institute of Physics Conference Proceedings No. 503, Mellville,
New York, 2000.

(11) Johnson, C. S., Jr.Prog. Nucl. Magn. Reson. Spectrosc.1999, 34, 203.
(12) Noda, I.Appl. Spectrosc.1990, 44, 550.
(13) Noda, I.J. Am. Chem. Soc.1986, 111, 8116.
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generating spectra from pairs of disparate data sets is known as hetero-
spectral correlation.12 Due care should be exercised in the use of this
terminology in the context of NMR data because of the established
use of the term hetero-nuclear correlation.

Taking the idea of hetero-spectral correlation a step further, it is not
even required for the response curves to be experimentally measured.
Thus, one set of response curves may originate in a data set and the
other may arise from a model. In this case, the generating function for
the model data set can be viewed as a kernel for an integral transform.
If a kernel or external data set is used in the correlation analysis, then
the axis in the correlation spectrum corresponding to the reference data
set will not necessarily be a frequency, but will rather describe the
parameter that is varied in the kernel or in the external data set.

A general result of central importance follows directly from the
definitions above. If the response curves at positionsωm and ωn are
proportional, i.e., the same to within a real (not complex) scaling factor,
the value of the asynchronous part must be zero. If the response curves
are different or have a complex scaling factor corresponding to a phase
difference, then the asynchronous spectrum at coordinates (ωm,ωn) is
not necessarily zero. It follows from this result thata model-independent
and response curVe-independent interpretation is possible for general-
ized correlation spectra. This is a key benefit of generalized correlation
analysis.

Examples

Analysis of Diffusion Data for Mixtures. Diffusion-ordered
NMR spectroscopy (DOSY)3,11 is a technique for separating
signals from different molecules within a mixture based on their
differing diffusion coefficients. DOSY has become a standard
tool in the analysis of mixtures by NMR. The DOSY experiment
requires collection of a series of spectra using a pulse sequence
for measuring diffusion coefficients. A parameter such as
gradient strength is systematically incremented for each member
of the series, leading to a decay of the signal intensity according
to a known function of the diffusion coefficient and the
systematically varied parameter. After collection the data set
must be processed and displayed. A DOSY plot consists of a
contour plot having chemical shift on one axis and diffusion
coefficient on the other. Calculation of the diffusion coefficient
or spectrum of diffusion coefficients at each frequency is usually
achieved by using any of a number of algorithms for fitting or
deconvoluting the exponential decay curves.11

This section demonstrates an alternate approach to evaluating
and displaying diffusion-ordered data based on generalized
correlation analysis. Starting with the same data set that might
be used to calculate a DOSY spectrum, generalized correlation
analysis gives a traditional two-dimensional correlation plot,
S(ω1,ω2), having both axes corresponding to frequencies.
Qualitative information on relative diffusion coefficients is
contained in the signs and intensities of the cross-peaks. In
particular, a cross-peak at frequency coordinates (ωm,ωn) will
have a positive, negative, or zero intensity if the diffusion
coefficient characterizing the signal atωm is larger than, smaller
than, or equal to the diffusion coefficient characterizing the
signal atωn, respectively.

To illustrate the properties for an idealized case, consider a
simple example in which the spectra consist of signals which
decay exponentially as a function of the external parameterp.

Response curves of this form arise in diffusion, relaxation,
kinetics, and similar NMR experiments. For most implementa-

tions of DOSY,p corresponds to the square of the gradient
strength multiplied by some other constant and known param-
eters,bm corresponds to the diffusion coefficient, andam is the
signal intensity.15 It follows directly from eqs 1-5 that the real
and imaginary intensities at coordinates (ωm,ωn) in the general-
ized correlation spectrum are given by

The asynchronous componentΨ is proportional to the log of
the ratio of the decay constants. This can be negative, positive,
or zero depending on the relative values of the decay constants.
Hence, for response curves described by eq 6, the signs and
intensities of the cross-peaks in the two-dimensional asynchro-
nous spectrum allow one to sort the decay constants for the
various molecules. The ratio of the asynchronous and synchro-
nous intensities is a quantitative measure of the log of the ratio
of diffusion coefficients.

For many experiments, the signal response curves will not
comply with eq 6. For example, the pulsed field gradient for
many commercial probes is spatially inhomogeneous, and the
resulting response curves are strongly nonexponential.14 The
results of generalized correlation processing of such a data set
will still give informative results because matched response
functions will give zero intensity and unmatched response
functions will give nonzero intensity in the asynchronous
spectrum. Therefore this approach may be particularly useful
for analysis of DOSY data generated by using many com-
mercially available NMR probes.

In applying pulse field gradient experiments for measuring
diffusion coefficients, one has the option of generating either
exponential or Gaussian signal response functions by choosing
the manner in which the gradient strength is varied.11 There
appears to be certain advantages to the Gaussian form. For
example, it is possible to cover a wider range of diffusion
coefficients in a single experiment since the gradient strengths
do not bunch up at the higher values. A simple quantitative
treatment of Gaussian response curves leading to expressions
analogous to eqs 7 and 8 is not possible because no simple
closed-form analytical expression is available for the Fourier
sine transform of the Gaussian function. Nonetheless, it is
possible to show numerically that the asynchronous spectrum
will have positive, negative, or zero cross-peak intensity
depending on if the decay constant of one response curve is
greater than, less than, or equal to the decay constant of the
response curve to which it is being compared. Therefore,
regardless of the functional form of the response functions
obtained from diffusion-based experiments, the generalized
correlation approach gives spectra that distinguish and rank order
signals having different diffusion coefficients.

To demonstrate the use of generalized correlation analysis
for evaluation of diffusion data on mixtures, a solution

(14) Hurd, R. E.; Deese, A.; O’Neil-Johnson, M.; Sukumar, S.; van Zijl, P. C.
M. J. Magn. Reson. A1996, 119, 285.

(15) Stejskal, E. O.; Tanner, J. E.Chem. Phys.1965, 42, 288.

y(ωm,p) ) ame-bmp (6)
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)
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comprised of 32 mM sodium dodecyl sulfate (SDS), 32 mM
sucrose, and 32 mM ethanol and 32 mM methanol in D2O was
prepared. Data were acquired by using the LED pulse sequence16

modified with bipolar gradients and convection compensation,17

from which diffusion coefficients and DOSY spectra can be
calculated based on the signal response functions. The experi-
ment was carried out with an array of 32 linearly spaced gradient
strengths leading to Gaussian response curves. The NMR probe
was of the “ultra linear” design provided by the spectrometer
vendor, giving a gradient strength of 60 G/cm at the highest
setting. Data were processed with MATLAB (The Mathworks,
Inc.) with use of MatNMR18 to facilitate NMR-specific process-
ing tasks.

Figure 1 shows the full synchronous and asynchronous spectra
calculated from this data set. The synchronous spectrum shows
cross-peaks among all signals regardless of their molecule of

origin. Any horizontal or vertical one-dimensional slice through
any cross-peak constitutes a scaled copy of the one-dimensional
spectrum. As expected, the asynchronous spectrum shows cross-
peaks only among signals from molecules having different
diffusion coefficients. The horizontal and vertical “stripes” at
the chemical shift of HOD arise from the large number of
exchangeable hydrogen atoms provided by the alcohol and sugar
components along with the residual HOD in the D2O stock.

Figure 2 shows expansions of the spectra in the chemical
shift range from 3.1 to 4.2 ppm. Within this narrow range of
chemical shifts, signals from all components except HOD can
be observed. Common features of diffusion-resolved experi-
ments processed using generalized correlation analysis are
apparent in these plots. The diagonal peak apparent in the
synchronous spectrum near 4.1 ppm corresponds to a sucrose
resonance and is missing from the asynchronous spectrum. This
is expected, because by definition a diagonal peak correlates a
signal with itself and identical or proportional response curves
give zero intensity in the asynchronous spectrum. However,
there is a pattern of signals visible near the 3.9 ppm diagonal
position in the asynchronous spectrum. Both SDS and sucrose
have signals at this position. Thus, the presence of diagonal
peak patterns in the asynchronous spectrum is indicative of near

(16) Gibbs, S. J.; Johnson, C. S., Jr.J. Magn. Reson.1991, 93, 395.
(17) Jerschow, A.; Mu¨ller, N. J. Magn. Reson.1997, 125, 372.
(18) MatNMR is an NMR processing package written for MATLAB by J. van

Beek, distributed (http://www.nmr.ethz.ch/) under the GNU public license.

Figure 1. Synchronous (top) and asynchronous (bottom) generalized
correlation spectra of a mixture comprised of 32 mM each of sodium dodecyl
sulfate, sucrose, ethanol, and methanol in deuterium oxide. Data were
acquired as described in the text. Each one-dimensional spectrum was
Fourier transformed after application of a half sine wave apodization function
having a width of 8196 points. Complex frequency-domain spectra were
converted to their absolute values. Complex Fourier transformation along
the diffusion dimension was then performed to create a doubly transformed
matrix. The complex generalized correlation spectrum was calculated as
the matrix product of this matrix with the complex conjugate of its own
transpose.

Figure 2. Expanded view from 3.1 to 4.2 ppm of the generalized correlation
spectrum shown in Figure 1. The synchronous spectrum (top) shows cross-
peaks among signals from all molecules. The asynchronous spectrum
(bottom) shows cross-peaks only among signals from molecules having
different diffusion coefficients. Peak patterns near the diagonal are indicative
of nearly overlapped signals from different molecules. Signs of cross-peaks
are not discernible from this contour plot.
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overlap of signals having different response curves. A similar
situation is observed near 3.5 ppm, where signals from ethanol
and sucrose are partially overlapped. All the remaining signals
in the asynchronous spectrum correlate signals from molecules
having different diffusion coefficients.

The signs of cross-peaks in the asynchronous spectrum, which
are not apparent from the contour plot, give information on the
relative diffusion coefficients of the components. As an illustra-
tion, Figure 3 shows one-dimensional horizontal slices through
the asynchronous spectrum at chemical shifts corresponding to
SDS, sucrose, and ethanol chemical shifts. In each case, signals
from molecules having faster or slower diffusion coefficients
have positive or negative signs, respectively. Signals arising
from atoms in the same molecule have zero intensity in these
slices. A mix of positive and negative character can appear at
locations for which there is overlap of signals from different
molecules, such as near 3.9 ppm in the slice through a sucrose
resonance in Figure 3.

On the basis of these features, a simple procedure may be
devised for interpreting a generalized correlation spectrum
generated from diffusion data sets. First, discount all cross-peaks
in the synchronous spectrum that have a corresponding peak in
the asynchronous spectrum. The ladders of remaining peaks
correspond to spectra of individual molecules or groups of
molecules with indistinguishable diffusion coefficients. One can
then rank the diffusion coefficients of the molecules based on
the signs of cross-peaks among them in the asynchronous
spectrum. Simple computer algorithms can be envisioned that
use synchronous and asynchronous peak coordinates as input
and that produce lists of chemical shifts for each molecule
ranked by diffusion coefficient as output.

Whether done manually or with computer automation, the
analysis as described so far is deterministic, nearly independent
of any model, and does not require a least-squares fitting

algorithm. It relies mostly on the observation that proportional
response curves give zero peak intensity in the asynchronous
spectrum. The assertion that the signs of cross-peaks give a
qualitative measure of relative diffusion coefficients is only
weakly model dependent, and therefore it is highly robust.
Analyzing a generalized correlation plot is about as easy as
analyzing traditional 2D spectra such as COSY and TOCSY.
The result of such a procedure is a separation of spectra from
different components, which is a main goal of DOSY. For data
acquired with a high gradient linearity, it is possible to further
analyze the correlation spectra to calculate quantitative ratios
of diffusion coefficients using cross-peak intensities. It is also
possible to analyze the data by comparison to a model, as
described in the following section.

Comparison to Model Data. One way to determine quan-
titative parameters describing response curves with use of the
generalized correlation approach is to introduce a model data
set. The procedure again takes advantage of the fact that when
an experimental peak having a particular response curve is cross-
correlated with a model having the same (or proportional)
response curve, the intensity in the asynchronous spectrum will
be zero. Assuming that the analytical expression for the response
curve is known, a model data set can be constructed that contains
response curves incremented systematically and that span the
range of parameters expected in the sample. In the generalized
hetero-spectral correlation plots generated with this model data
set, one axis will correspond to the chemical shift in the
experimental data set, and the other axis will correspond to the
index for the model response curves. Locations of zero crossings
along the model parameter axis in the asynchronous hetero-
spectral correlation plot indicate the index of the model response
set having the same response parameter (i.e., diffusion coef-
ficient) as the signal.

Figure 4 shows a traditional DOSY plot calculated from the
same data set used to generate Figures 1-3 following this
procedure. The model data set consisted of a series of 1000
Gaussian response curves generated with logarithmically spaced
diffusion coefficients. Since the asynchronous hetero-spectral
correlation slices cross zero at the index of the model response
curve having the same decay constant as the experimental signal,
the diffusion-resolved spectrum was created by examining the

Figure 3. Selected one-dimensional slices of the asynchronous generalized
correlation spectrum shown in Figure 1. Slices through SDS (top), sucrose
(middle), and ethanol (bottom) show signals only at chemical shifts
corresponding to different molecules. Positive peaks indicate higher diffusion
coefficients, and negative peaks indicate lower diffusion coefficients.

Figure 4. DOSY plot constructed by using generalized correlation analysis.
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value of the asynchronous spectrum at every point. A prelimi-
nary output spectrum was created such that if the asynchronous
hetero-spectral correlation curve crossed zero at a given point,
the output spectrum was given the value of the corresponding
location in the synchronous hetero-spectral correlation curve.
Otherwise, the output spectrum was given a value of zero at
that point.

Due to experimental uncertainty, the diffusion coefficients
determined by this approach for different frequencies corre-
sponding to the same molecule have some scatter. Additional
processing was therefore required to properly classify signals
with respect to their molecule of origin and to objectively assign
a diffusion coefficient to each molecule. The next step in the
procedure used to generate Figure 4 was to calculate the
projection of the spectrum along the diffusion axis. This
projection was then smoothed by convolution with a Gaussian
function having a width corresponding to the width of the
clusters of diffusion coefficients. The position of the signal at
each chemical shift in the preliminary spectrum was then
adjusted to the location of the closest maximum in the smoothed
projection. Finally, the signals were given a Gaussian width in
the diffusion dimension corresponding to the width of the
smoothing function used originally for the projection.

Figure 4 shows that signals from HOD, methanol, ethanol,
sucrose, and SDS can all be distinguished on the basis of their
diffusion coefficients. Spurious signals are observed near 3.9
ppm where sucrose and SDS overlap. The apparent diffusion
coefficients for these spurious signals are intermediate between
the two contributing materials. Low intensity spurious signals
also appear near the upfield ethanol triplet signal. These arise
from experimental uncertainty beyond the width of the Gaussian
convolution function used to classify the diffusion coefficients
in the preliminary output spectrum. By inspection of the
asynchronous generalized correlation spectrum of this data set,
one can determine which signals in the DOSY spectrum are
spurious.

It is worthwhile to consider how the values of diffusion
coefficients determined by this procedure compare to those
determined by least-squares curve fitting. Signals at chemical
shifts corresponding to water, methanol, the upfield tripliet of
ethanol, the anomeric hydrogen of sucrose, and the upfield triplet
of SDS were selected for this analysis. Diffusion coefficients
were determined from traditional least-squares curve fitting to
a Gaussian function, from positions of zero crossings in the
asynchronous hetero-spectral correlation plot, and from the
consensus positions determined in the construction of Figure
4. Table 1 lists the diffusion coefficients compared to water for
all of these compounds and methods. This shows that when the
form of the response curves is known, generalized correlation
analysis gives comparable results to least-squares curve fitting
and may be useful for quantitative diffusion studies in addition
to qualitative separation of signals from different mixture
components.

Differential Asynchronous Decay Spectra.It is common
to compare two NMR spectra or spectral sets to see if one differs
from the other in some regard. For example, in ligand-receptor
binding studies conducted with NMR, a frequent strategy is to
identify differences in diffusion coefficients or relaxation rates
between two samples.19 The control sample is usually a mix of
potential ligands, while the experimental sample contains a
macromolecular receptor in addition to the ligands. Because of
the reduction in diffusion coefficients or change in relaxation
rates of ligands which reversibly bind to large receptors, this
approach can be used to identify and quantify binding of the
highest affinity ligands in the mix. There are many additional
examples of situations in which changes in diffusion coefficients,
relaxation rates, or other parameters apply to some mixture of
components and not to others following some perturbation. It
is advantageous to devise a model-independent data reduction
strategy that identifies those spectral components whose be-
havior with respect to an external parameterp changes from
one data set to the next. Generalized correlation analysis
provides a means for devising such a strategy.

The protocol is best illustrated with a specific example.
Consider a pair of nearly identical mixtures. The first (experi-
mental) sample contains an additive that influences the diffusion
coefficients of some components, while the second (control)
sample does not contain the additive. The samples have
otherwise identical compositions. The goal of the analysis is to
identify those signals influenced by the presence of the additive.
Identification of the affected signals requires acquisition of a
series of spectra for both samples from which diffusion
coefficients can be determined. One approach to identifying the
components that interact with additive is to directly determine
the diffusion coefficients of every signal in both samples, and
compare the results peak-by-peak. An alternate strategy involves
calculation of the generalized correlation matrix in which
response curvesy(ωm,p) and y(ωn,p) originate in the experi-
mental and control spectra, respectively. Such spectra will be
calleddifferential decay spectra.

The desired information is contained in the diagonal elements
of the differential asynchronous decay spectrum. These elements
correlate slices having the same chemical shift in the two data
sets. The intensity of the asynchronous spectrum will be zero
if the two slices have identical response curves. The intensity
will be nonzero if the two slices have different response curves.
Therefore, the diagonal of the differential asynchronous decay
spectrum will appear as a simple one-dimensional NMR
spectrum with peaks at those positions for which a difference
in the response curves exists between the experimental and
control samples. This analysis is model independent. It can be
applied to diffusion, kinetics, relaxation, electrokinetics, etc.
Quantitative determination of decay constants is of course
possible by introducing a model data set with an appropriate
kernel.

Figure 5, top, shows the diagonal of a differential asynchro-
nous decay spectrum calculated from two samples, one identical
with that used to generate Figure 1, the other differing only in
that the mixture additionally contained 10 mM of the nonionic
surfactant pentaoxyethylene glycol monooctyl ether (C8E5).
This is compared to the normal NMR spectrum of the mixture

(19) Lin, M. F.; Shapiro, M. J.; Wareing, J. R.J. Am. Chem. Soc.1997, 119,
5249.

Table 1. Natural Logarithms of Diffusion Coefficients Compared to
Water

compound curve fit zero crossing smoothed DOSY

methanol -0.473 -0.484 -0.479
ethanol -0.629 -0.641 -0.622
sucrose -1.544 -1.549 -1.540
SDS -2.467 -2.462 -2.480
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in the lower panel of Figure 5. Introduction of additional
surfactant into the mixture is expected to decrease the diffusion
coefficient of the surfactant because a larger fraction of the
surfactant will reside in the slowly diffusing micellar form. As
expected, the peaks in the differential asynchronous decay
spectrum occur at frequencies corresponding to signals from
the surfactants. The peak near 3.5 ppm arises from overlap of
signals from the nonionic surfactant and sucrose. Because of
this overlap, the response curves in the experimental and control
spectra are different, leading to the appearance of a signal in
the differential asynchronous decay spectrum at this position.
There is also a feature near 3.9 ppm that corresponds to signals
from both SDS and sucrose. The positive aspect of this signal
arises from an increase in the diffusion coefficient of SDS. We
speculate that the negative aspect arises from a slight change
in the chemical shift and/or the line width of this SDS signal
that changes the response curve at the chemical shift of sucrose,
causing its apparent decay rate to increase. Such slight changes
in chemical shifts make a significant contribution to differential
asynchronous decay spectra. The time domain data used to
generate Figure 5 were truncated to 2048 points before Fourier
transformation to eliminate some of these effects. The signal
near 4.6 ppm corresponding to water also appears to have
contributions from changes in the diffusion coefficient of water
and possibly from slight chemical shift or line width changes.
Signals from ethanol, methanol, and most of the sucrose signals
are absent from the differential asynchronous decay spectrum.

Discussion

Generalized correlation analysis provides a new approach to
analyzing and comparing NMR data sets. The technique extends
the applicability of two-dimensional NMR by allowing model-
independent analysis of nonperiodic signals as well as model-
dependent analysis of such signals. Establishing correlations
between signals does not necessarily require a coherence transfer
step. The result of such an analysis is a complex two-
dimensional spectrum whose real and imaginary parts provide
a measure of how similar and how different the signals are,
respectively.

The simplest approach calculates the spectrum from response
curves originating within a single data set. This was illustrated
with a set of diffusion data for a multicomponent mixture, giving
an asynchronous spectrum having cross-peaks only among
signals with different diffusion coefficients. This particular
experiment has a great deal of practical value because, like
DOSY, it allows a spectrum of a complex mixture to be resolved
into subspectra of individual components based on their differing
diffusion coefficients. Partial overlap of signals is apparent from
the presence of peak patterns close to the diagonal of the
asynchronous spectrum. The spectral appearance is similar to
established forms of two-dimensional NMR spectroscopy and
should be familiar to practicing spectroscopists. The rules for
interpreting the data are quite simple and easily amenable to
computer automation. The strategy does not require a high
degree of spatial gradient constancy, and it is therefore recom-
mended that this approach be used with many existing gradient
probes. We propose the name GECO-DOSY (GEneralized
COrrelation Decay Ordered SpectroscopY) for spectra generated
with this approach.

Comparison of an experimental data set to a model was also
illustrated. In this case, the comparison allows determination
of quantitative diffusion coefficients, and provides an alternate
approach to the generation of DOSY spectra. Although it is
model-dependent, the model may be developed based on
interpolation from anexperimentalcurve whosep axis is
stretched or compressed to generate the reference response curve
set. Thus, this procedure allows, for example, quantitative
interpretation of data acquired with NMR probes having sub-
optimal gradient design. Furthermore, when model response
curves describe only approximately the response function of
the real data, there will still be a model parameter giving an
effective match as indicated by a zero asynchronous intensity.
The location of this effective match remains useful for qualita-
tive separation of differing components.

Generalized correlation analysis underlies an experimental
strategy for identifying mixture components whose behaviors
differ with respect to an external perturbation. This was
illustrated by changing a surfactant concentration that caused
changes in the diffusion coefficient of a subset of solution
components. It was straightforward to identify the components
whose behavior changed by examining the diagonal trace of
the differential asynchronous decay spectrum. This strategy is
potentially useful as a method for identifying changes in
complex response curves, as might be generated in metabolic
and toxicological experiments monitored by NMR. We propose
the acronym DAD (Differential Asynchronous Decay) for
spectra generated following this procedure.

Finally, it is of value to mention some practical aspects of
the use of generalized correlation analysis of NMR data based
on our experience so far. The methods appear to place the same
demands on the quality of raw spectral data as other processing
techniques. Spectrum-to-spectrum phase constancy and flat
baselines are no less critical than with other methods. When
signals are sufficiently strong and sharp, use of a half sine wave
apodization function along with absolute value presentation
completely eliminates baseline and phase issues. Applications
of hetero-spectral correlation analysis, such as generation of
differential asynchronous decay spectra, depend strongly on
sample-to-sample reproducibility of chemical shifts if the desired

Figure 5. Differential asynchronous decay spectrum from addition of
C8E5 (top). The spectrum is compared to the spectrum of the mixture
(bottom).
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information is to be obtained from a single one-dimensional
slice through the diagonal. Though we have not yet carried out
a detailed analysis of the signal-to-noise characteristics of
generalized correlation spectra, there does not appear to be an
obvious difference compared to other approaches to two-
dimensional spectroscopy. In the unlikely event that two signals
have truly identical chemical shifts and line widths but different
response curves, two-dimensional generalized correlation analy-

sis does not have the ability to separate these signals. If signals
from the same molecules are present at other chemical shifts,
the overlapping signals will appear different from both of these.
If the signals have even slightly different shifts or widths, the
presence of near-diagonal peak patterns in generalized correla-
tion spectra provides a powerful diagnostic.
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